Hledat:

Invia.cz Last minute Tunisko Dovolená v Chorvatsku Pojeďte do Egypta Bulharsko Last minute Kréta
 

Surdická čísla

Surdické číslo (někdy také označované jako číslo dvojrodé) je každé číslo ve tvaru , kde jsou nezáporná racionální čísla a kde není druhou mocninou žádného racionálního čísla. Například číslo .

Surdické výrazy jsou reálná čísla ve formě dvojčlenu, kdy jeden člen je racionální a druhý je druhou odmocninou. Tato čísla bývají zpravidla kořeny kvadratických rovnic s celočíselnými koeficienty.[pozn. 1] Úpravou odmocnin ze surdických čísel se zabýval indický matematik Bháskara II. z 12. století.[1] Ten odvodil vzorce, které někdy nazýváme Bhaskarovými vzorci.

Bhaskarovy vzorce[editovat | editovat zdroj]

Bhaskarovy vzorce jsou velice užitečné, proto byly dříve i součástí středoškolských učebnic. Přestože nabízejí velice elegantní možnost úpravy, tak je nelze použít na každou odmocninu ze surdického čísla.

Odmocnina ze surdického čísla[editovat | editovat zdroj]

Odmocnina ze surdického čísla je speciální příklad tzv. vnořené odmocniny (anglicky nested radical).

Pro libovolná kladná reálná čísla taková, že platí:

 

 

 

 

(1)

Na první pohled je získaný vztah ještě složitější, než samotná odmocnina, přesto někdy může tento vztah převést některé odmocniny na mnohem jednodušší tvar. Dokázat tento vzorec lze jednoduše umocněním obou stran rovnice.

Tento vzorec však zjednoduší výraz pouze tehdy, pokud je výraz racionální.

Součet a rozdíl dvou odmocnin ze surdického čísla[editovat | editovat zdroj]

Jelikož použitím vzorce (1) může vzniknout součet, nebo rozdíl dvou odmocnin ze surdických čísel lišících se pouze znaménkem, tak je výhodné si odvodit i vzorec pro zjednodušení tohoto součtu, nebo rozdílu:

 

 

 

 

(2)

Příklad[editovat | editovat zdroj]

V oboru reálných čísel řešte kvadratickou rovnici:

Případné iracionální kořeny zapište v jednoduchém tvaru bez odmocnin iracionálních čísel.[2]


Vypočteme diskriminant

Jelikož diskriminant je surdické číslo , tak odmocninu musíme upravit použitím Bhaskarova vzorce:

takže kořeny:

Poznámky[editovat | editovat zdroj]

  1. Např. jednoduchým dosazením se lze přesvědčit, že čísla a jsou kořeny kvadratické rovnice s racionálními koeficienty; vynásobením společným jmenovatelem koeficientů se získá rovnice s koeficienty celočíselnými.

Reference[editovat | editovat zdroj]

  1. ŠTĚDRÝ, M. Odmocnina z čísel surdických. Rozhledy matematicko-fyzikální: časopis pro studující středních škol a zájemce o matematiku, fyziku …. Praha: Jednota českých matematiků a fyziků, 1984-1985, 63 (9), 387-89. ISSN 0035-9343.
  2. ŠIMŠA, J. Kategorie B. Matematická olympiáda pro žáky středních škol [online]. 62. ročník. 2012 [cit. 2014-03-09]. Dostupné z: https:/​/​cgi.math.muni.cz/​~rvmo/​ABC/​62/​62domaci.pdf
 
Tento článek je převzat z české wikipedie - otevřené encyklopedie, originální článek naleznete na adrese: „https://cs.wikipedia.org/w/index.php?title=Surdická_čísla&oldid=15207916
Stránka byla naposledy upravena 29. 7. 2017 v 22:28. Editovat celý článek Surdická čísla.
Text je dostupný pod licencí Creative Commons Uveďte autora – Zachovejte licenci 3.0 Unported, případně za dalších podmínek. Podrobnosti naleznete na stránce Podmínky užití.
Další služby: Portál | Katalog | Hledej | Zprávy | Počasí | Kurzy | Práce | Slovník | TV | Online hry | Java hry | SMS | Loga a melodie | Chat | Fórum | Kontakt | Set-top-boxy